Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Rational parking functions and LLT polynomials

Abstract

We prove that the combinatorial side of the "Rational Shuffle Conjecture" provides a Schur-positive symmetric polynomial. Furthermore, we prove that the contribution of a given rational Dyck path can be computed as a certain skew LLT polynomial, thus generalizing the result of Haglund, Haiman, Loehr, Remmel and Ulyanov. The corresponding skew diagram is described explicitly in terms of a certain (m, n)-core.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View