- Main
DDOT: A Swiss Army Knife for Investigating Data-Driven Biological Ontologies
Published Web Location
https://doi.org/10.1016/j.cels.2019.02.003Abstract
Systems biology requires not only genome-scale data but also methods to integrate these data into interpretable models. Previously, we developed approaches that organize omics data into a structured hierarchy of cellular components and pathways, called a "data-driven ontology." Such hierarchies recapitulate known cellular subsystems and discover new ones. To broadly facilitate this type of modeling, we report the development of a software library called the Data-Driven Ontology Toolkit (DDOT), consisting of a Python package (https://github.com/idekerlab/ddot) to assemble and analyze ontologies and a web application (http://hiview.ucsd.edu) to visualize them. Using DDOT, we programmatically assemble a compendium of ontologies for 652 diseases by integrating gene-disease mappings with a gene similarity network derived from omics data. For example, the ontology for Fanconi anemia describes known and novel disease mechanisms in its hierarchy of 194 genes and 74 subsystems. DDOT provides an easy interface to share ontologies online at the Network Data Exchange.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-