- Main
Unlocking the thermoelectric potential of the Ca14AlSb11 structure type
Published Web Location
https://doi.org/10.1126/sciadv.abq3780Abstract
Yb14MnSb11 and Yb14MgSb11 are among the best p-type high-temperature (>1200 K) thermoelectric materials, yet other compounds of this Ca14AlSb11 structure type have not matched their stability and efficiency. First-principles computations show that the features in the electronic structures that have been identified to lead to high thermoelectric performances are present in Yb14ZnSb11, which has been presumed to be a poor thermoelectric material. We show that the previously reported low power factor of Yb14ZnSb11 is not intrinsic and is due to the presence of a Yb9Zn4+xSb9 impurity uniquely present in the Zn system. Phase-pure Yb14ZnSb11 synthesized through a route avoiding the impurity formation reveals its exceptional high-temperature thermoelectric properties, reaching a peak zT of 1.2 at 1175 K. Beyond Yb14ZnSb11, the favorable band structure features for thermoelectric performance are universal among the Ca14AlSb11 structure type, opening the possibility for high-performance thermoelectric materials.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-