- Main
End-to-End diagnosis of breast biopsy images with transformers.
Published Web Location
https://doi.org/10.1016/j.media.2022.102466Abstract
Diagnostic disagreements among pathologists occur throughout the spectrum of benign to malignant lesions. A computer-aided diagnostic system capable of reducing uncertainties would have important clinical impact. To develop a computer-aided diagnosis method for classifying breast biopsy images into a range of diagnostic categories (benign, atypia, ductal carcinoma in situ, and invasive breast cancer), we introduce a transformer-based hollistic attention network called HATNet. Unlike state-of-the-art histopathological image classification systems that use a two pronged approach, i.e., they first learn local representations using a multi-instance learning framework and then combine these local representations to produce image-level decisions, HATNet streamlines the histopathological image classification pipeline and shows how to learn representations from gigapixel size images end-to-end. HATNet extends the bag-of-words approach and uses self-attention to encode global information, allowing it to learn representations from clinically relevant tissue structures without any explicit supervision. It outperforms the previous best network Y-Net, which uses supervision in the form of tissue-level segmentation masks, by 8%. Importantly, our analysis reveals that HATNet learns representations from clinically relevant structures, and it matches the classification accuracy of 87 U.S. pathologists for this challenging test set.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-