Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Rates of Hydroxyl Radical Production from Transition Metals and Quinones in a Surrogate Lung Fluid

Abstract

Hydroxyl radical ((•)OH) is the most reactive, and perhaps most detrimental to health, of the reactive oxygen species. (•)OH production in lungs following inhalation of particulate matter (PM) can result from redox-active chemicals, including iron and copper, but the relative importance of these species is unknown. This work investigates (•)OH production from iron, copper, and quinones, both individually and in mixtures at atmospherically relevant concentrations. Iron, copper, and three of the four quinones (1,2-naphthoquinone, phenanthrenequinone and 1,4-naphthoquinone) produce (•)OH. Mixtures of copper or quinones with iron synergistically produce (•)OH at a rate 20-130% higher than the sum of the rates of the individual redox-active species. We developed a regression equation from 20 mixtures to predict the rate of (•)OH production from the particle composition. For typical PM compositions, iron and copper account for most (•)OH production, whereas quinones are a minor source, although they can contribute if present at very high concentrations. This work shows that Cu contributes significantly to (•)OH production in ambient PM; other work has shown that Cu appears to be the primary driver of HOOH production and dithiothreitol (DTT) loss in ambient PM extracts. Taken together, these results indicate that copper appears to be the most important individual contributor to direct oxidant production from inhaled PM.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View