- Main
Computational Prediction and Experimental Validation of a Bridged Cation Intermediate in Akanthomycin Biosynthesis
Published Web Location
https://doi.org/10.1021/jacs.2c02288Abstract
Here we report a computation-driven chemoenzymatic synthesis and biosynthesis of the natural product deoxyakanthomycin, an atropisomeric pyridone natural product that features a 7-membered carbocycle with five stereocenters, one of which a quaternary center. The one-step synthesis from a biosynthetic precursor is based on computational analysis that predicted a σ-bridged cation mediated cyclization mechanism to form deoxyakanthomycin. The σ-bridged cation rationalizes the observed substrate-controlled selectivity; diastereoselectivity arises from attack of water anti to the σ-bridging, as is generally found for σ-bridged cations. Our studies also reveal a unifying biosynthetic strategy for 2-pyridone natural products that derive from a common o-quinone methide to create diverse structures.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-