Skip to main content
Download PDF
- Main
Derived mammographic masking measures based on simulated lesions predict the risk of interval cancer after controlling for known risk factors: a case‐case analysis
Published Web Location
https://doi.org/10.1002/mp.13410Abstract
Purpose
Women with radiographically dense or texturally complex breasts are at increased risk for interval cancer, defined as cancers diagnosed after a normal screening examination. The purpose of this study was to create masking measures and apply them to identify interval risk in a population of women who experienced either screen-detected or interval cancers after controlling for breast density.Methods
We examined full-field digital screening mammograms acquired from 2006 to 2015. Examinations associated with 182 interval cancers were matched to 173 screen-detected cancers on age, race, exam date and time since last imaging examination. Local Image Quality Factor (IQF) values were calculated and used to create IQF maps that represented mammographic masking. We used various statistics to define global masking measures of these maps. Association of these masking measures with interval cancer vs screen-detected cancer was estimated using conditional logistic regression in a univariate and adjusted model for Breast Imaging-Reporting and Data System (BI-RADS) density. Receiver operator curves were calculated in each case to compare specificity vs sensitivity, and area under those curves were generated. Proportion of screen-detected cancer was estimated for stratifications of IQF features.Results
Several masking features showed significant association with interval compared to screen-detected cancers after adjusting for BI-RADS density (up to P = 2.52E-6), and the 10th percentile of the IQF value (P = 1.72E-3) showed the strongest improvement in the area under the receiver operator curve, increasing from 0.65 using only BI-RADS density to 0.69. The highest masking group had a 32% proportion of screen-detected cancers while the low masking group had a 69% proportion.Conclusions
We conclude that computer vision methods using model observers may improve quantifying the probability of breast cancer detection beyond using breast density alone.Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
For improved accessibility of PDF content, download the file to your device.
Enter the password to open this PDF file:
File name:
-
File size:
-
Title:
-
Author:
-
Subject:
-
Keywords:
-
Creation Date:
-
Modification Date:
-
Creator:
-
PDF Producer:
-
PDF Version:
-
Page Count:
-
Page Size:
-
Fast Web View:
-
Preparing document for printing…
0%