Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Reconstruction of Cell Focal Adhesions using Physical Constraints and Compressive Regularization

Abstract

We develop a method to reconstruct, from measured displacements of an underlying elastic substrate, the spatially dependent forces that cells or tissues impart on it. Given newly available high-resolution images of substrate displacements, it is desirable to be able to reconstruct small-scale, compactly supported focal adhesions that are often localized and exist only within the footprint of a cell. In addition to the standard quadratic data mismatch terms that define least-squares fitting, we motivate a regularization term in the objective function that penalizes vectorial invariants of the reconstructed surface stress while preserving boundaries. We solve this inverse problem by providing a numerical method for setting up a discretized inverse problem that is solvable by standard convex optimization techniques. By minimizing the objective function subject to a number of important physically motivated constraints, we are able to efficiently reconstruct stress fields with localized structure from simulated and experimental substrate displacements. Our method incorporates the exact solution for a stress tensor accurate to first-order finite differences and motivates the use of distance-based cutoffs for data inclusion and problem sparsification.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View