Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

Adaptive Evolutionary Optimization of Deep Learning Architectures for Focused Liver Ultrasound Image Segmentation.

Abstract

Background: Liver ultrasound segmentation is challenging due to low image quality and variability. While deep learning (DL) models have been widely applied for medical segmentation, generic pre-configured models may not meet the specific requirements for targeted areas in liver ultrasound. Quantitative ultrasound (QUS) is emerging as a promising tool for liver fat measurement; however, accurately segmenting regions of interest within liver ultrasound images remains a challenge. Methods: We introduce a generalizable framework using an adaptive evolutionary genetic algorithm to optimize deep learning models, specifically U-Net, for focused liver segmentation. The algorithm simultaneously adjusts the depth (number of layers) and width (neurons per layer) of the network, dropout, and skip connections. Various architecture configurations are evaluated based on segmentation performance to find the optimal model for liver ultrasound images. Results: The model with a depth of 4 and filter sizes of [16, 64, 128, 256] achieved the highest mean adjusted Dice score of 0.921, outperforming the other configurations, using three-fold cross-validation with early stoppage. Conclusions: Adaptive evolutionary optimization enhances the deep learning architecture for liver ultrasound segmentation. Future work may extend this optimization to other imaging modalities and deep learning architectures.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View