- Main
Rapid and comprehensive detection of viral antibodies and nucleic acids via an acoustofluidic integrated molecular diagnostics chip: AIMDx.
Published Web Location
https://doi.org/10.1126/sciadv.adt5464Abstract
Precise and rapid disease detection is critical for controlling infectious diseases like COVID-19. Current technologies struggle to simultaneously identify viral RNAs and host immune antibodies due to limited integration of sample preparation and detection. Here, we present acoustofluidic integrated molecular diagnostics (AIMDx) on a chip, a platform enabling high-speed, sensitive detection of viral immunoglobulins [immunoglobulin A (IgA), IgG, and IgM] and nucleic acids. AIMDx uses acoustic vortexes and Gorkov potential wells at a 1/10,000 subwavelength scale for concurrent isolation of viruses and antibodies while excluding cells, bacteria, and large (>200 nanometers) vesicles from saliva samples. The chip facilitates on-chip viral RNA enrichment, lysis in 2 minutes, and detection via transcription loop-mediated isothermal amplification, alongside electrochemical sensing of antibodies, including mucin-masked IgA. AIMDx achieved nearly 100% recovery of viruses and antibodies, a 32-fold RNA detection improvement, and an immunity marker sensitivity of 15.6 picograms per milliliter. This breakthrough provides a transformative tool for multiplex diagnostics, enhancing early infectious disease detection.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-