Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Anti-inflammatory Effects of &ohgr;-3 Polyunsaturated Fatty Acids and Soluble Epoxide Hydrolase Inhibitors in Angiotensin-II–Dependent Hypertension

Abstract

The mechanisms underlying the anti-inflammatory and antihypertensive effects of long-chain ω-3 polyunsaturated fatty acids (ω-3 PUFAs) are still unclear. The epoxides of an ω-6 fatty acid, arachidonic acid epoxyeicosatrienoic acids also exhibit antihypertensive and anti-inflammatory effects. Thus, we hypothesized that the major ω-3 PUFAs, including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), may lower the blood pressure and attenuate renal markers of inflammation through their epoxide metabolites. Here, we supplemented mice with an ω-3 rich diet for 3 weeks in a murine model of angiotensin-II-dependent hypertension. Also, because EPA and DHA epoxides are metabolized by soluble epoxide hydrolase (sEH), we tested the combination of an sEH inhibitor and the ω-3 rich diet. Our results show that ω-3 rich diet in combination with the sEH inhibitor lowered Ang-II, increased the blood pressure, further increased the renal levels of EPA and DHA epoxides, reduced renal markers of inflammation (ie, prostaglandins and MCP-1), downregulated an epithelial sodium channel, and upregulated angiotensin-converting enzyme-2 message and significantly modulated cyclooxygenase and lipoxygenase metabolic pathways. Overall, our findings suggest that epoxides of the ω-3 PUFAs contribute to lowering systolic blood pressure and attenuating inflammation in part by reduced prostaglandins and MCP-1 and by upregulation of angiotensin-converting enzyme-2 in angiotensin-II-dependent hypertension.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View