- Main
Inorganic Chemistry Approaches to Activity-Based Sensing: From Metal Sensors to Bioorthogonal Metal Chemistry
Published Web Location
https://doi.org/10.1021/acs.inorgchem.9b01221Abstract
The complex network of chemical processes that sustain life motivates the development of new synthetic tools to decipher biological mechanisms of action at a molecular level. In this context, fluorescent and related optical probes have emerged as useful chemical reagents for monitoring small-molecule and metal signals in biological systems, enabling visualization of dynamic cellular events with spatial and temporal resolution. In particular, metals occupy a central role in this field as analytes in their own right, while also being leveraged for their unique biocompatible reactivity with small-molecule substrates. This Viewpoint highlights the use of inorganic chemistry principles to develop activity-based sensing platforms mediated by metal reactivity, spanning indicators for metal detection to metal-based reagents for bioorthogonal tracking, and manipulation of small and large biomolecules, illustrating the privileged roles of metals at the interface of chemistry and biology.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-