Skip to main content
Download PDF
- Main
Quantitative Proteomics Using Formalin-fixed, Paraffin-embedded Biopsy Tissues in Inflammatory Disease
Abstract
Background
Investigations in human disease pathogenesis have been hampered due to paucity of access to fresh-frozen tissues (FFT) for use in global, data-driven methodologies. As an alternative, formalin-fixed, paraffin-embedded (FFPE) tissues are readily available in pathology banks. However, the use of formalin for fixation can lead to the loss of proteins that appear during inflammation, thus introducing an inherent sample bias. To address this, we compared FF and FFPE tissue proteomics to determine whether FFPE-tissue can be used effectively in inflammatory diseases.Methods
Adjacent kidney slices from lupus nephritic mice were processed as FFPE or FFTs. Their tissue lysates were run together using proteomics workflow involving filter-aided sample preparation, in-solution dimethyl isotope labeling, StageTip fractionation, and nano-LC MS/MS through an Orbitrap XL MS.Results
We report a >97% concordance in protein identification between adjacent FFPE and FFTs in murine lupus nephritic kidneys. Specifically, proteins representing pathways, namely, 'systemic lupus erythematosus', 'interferon-α', 'TGF-β', and 'extracellular matrix', were reproducibly quantified between FFPE and FFTs. However, 12%-29% proteins were quantified differently in FFPE compared to FFTs, but the differences were consistent across experiments. In particular, certain proteins represented in pathways, including 'inflammatory response' and 'innate immune system' were quantified less in FFPE than in FFTs. In a pilot study of human FFPE tissues, we identified proteins relevant to pathogenesis in lupus nephritic kidney biopsies compared to control kidneys.Conclusion
This is the first report of lupus nephritis kidney proteomics using FFPE tissue. We concluded that archived FFPE tissues can be reliably used for proteomic analyses in inflammatory diseases, with a caveat that certain proteins related to immunity and inflammation may be quantified less in FFPE than in FFTs.Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
For improved accessibility of PDF content, download the file to your device.
If you recently published or updated this item, please wait up to 30 minutes for the PDF to appear here.
Enter the password to open this PDF file:
File name:
-
File size:
-
Title:
-
Author:
-
Subject:
-
Keywords:
-
Creation Date:
-
Modification Date:
-
Creator:
-
PDF Producer:
-
PDF Version:
-
Page Count:
-
Page Size:
-
Fast Web View:
-
Preparing document for printing…
0%