Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

DynaMorph: self-supervised learning of morphodynamic states of live cells

Abstract

A cell's shape and motion represent fundamental aspects of cell identity and can be highly predictive of function and pathology. However, automated analysis of the morphodynamic states remains challenging for most cell types, especially primary human cells where genetic labeling may not be feasible. To enable automated and quantitative analysis of morphodynamic states, we developed DynaMorph-a computational framework that combines quantitative live cell imaging with self-supervised learning. To demonstrate the robustness and utility of this approach, we used DynaMorph to annotate morphodynamic states observed with label-free measurements of optical density and anisotropy of live microglia isolated from human brain tissue. These cells show complex behavior and have varied responses to disease-relevant perturbations. DynaMorph generates quantitative morphodynamic representations that can be used to compare the effects of the perturbations. Using DynaMorph, we identify distinct morphodynamic states of microglia polarization and detect rare transition events between states. The concepts and the methods presented here can facilitate automated discovery of functional states of diverse cellular systems.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View