Skip to main content
eScholarship
Open Access Publications from the University of California

A model of path integration that connects neural and symbolic representation

Creative Commons 'BY' version 4.0 license
Abstract

Path integration, the ability to maintain an estimate of one's location by continuously integrating self-motion cues, is a vital component of the brain's navigation system. We present a spiking neural network model of path integration derived from a starting assumption that the brain represents continuous variables, such as spatial coordinates, using Spatial Semantic Pointers (SSPs). SSPs are a representation for encoding continuous variables as high-dimensional vectors, and can also be used to create structured, hierarchical representations for neural cognitive modelling. Path integration can be performed by a recurrently-connected neural network using SSP representations. Unlike past work, we show that our model can be used to continuously update variables of any dimensionality. We demonstrate that symbol-like object representations can be bound to continuous SSP representations. Specifically, we incorporate a simple model of working memory to remember environment maps with such symbol-like representations situated in 2D space.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View