Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

Deciphering metabolic differentiation during Bacillus subtilis sporulation.

Abstract

The bacterium Bacillus subtilis undergoes asymmetric cell division during sporulation, producing a mother cell and a smaller forespore connected by the SpoIIQ-SpoIIIA (or Q-A) channel. The two cells differentiate metabolically, and the forespore becomes dependent on the mother cell for essential building blocks. Here, we investigate the metabolic interactions between mother cell and forespore using genome-scale metabolic and expression models as well as experiments. Our results indicate that nucleotides are synthesized in the mother cell and transported in the form of nucleoside di- or tri-phosphates to the forespore via the Q-A channel. However, if the Q-A channel is inactivated later in sporulation, then glycolytic enzymes can form an ATP and NADH shuttle, providing the forespore with energy and reducing power. Our integrated in silico and in vivo approach sheds light into the intricate metabolic interactions underlying cell differentiation in B. subtilis, and provides a foundation for future studies of metabolic differentiation.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View