- Main
Energy Relaxation and Thermal Diffusion in Infrared Pump–Probe Spectroscopy of Hydrogen-Bonded Liquids
Published Web Location
https://doi.org/10.1021/acs.jpclett.9b01272Abstract
Infrared pump-probe spectroscopy provides detailed information about the dynamics of hydrogen-bonded liquids. Due to dissipation of the absorbed pump pulse energy, thermal equilibration dynamics also contributes to the observed signal. Disentangling this contribution from the molecular response remains a challenge. By performing non-equilibrium molecular dynamics simulations of liquid-deuterated methanol, we show that faster molecular vibrational relaxation and slower heat diffusion are decoupled and occur on different length scales. Transient structures of the hydrogen bonding network influence thermal relaxation by affecting thermal diffusivity over a length scale of several nanometers.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-