Skip to main content
eScholarship
Open Access Publications from the University of California

UC Santa Barbara

UC Santa Barbara Previously Published Works bannerUC Santa Barbara

Predictive equation derived from 6,497 doubly labelled water measurements enables the detection of erroneous self-reported energy intake.

Abstract

Nutritional epidemiology aims to link dietary exposures to chronic disease, but the instruments for evaluating dietary intake are inaccurate. One way to identify unreliable data and the sources of errors is to compare estimated intakes with the total energy expenditure (TEE). In this study, we used the International Atomic Energy Agency Doubly Labeled Water Database to derive a predictive equation for TEE using 6,497 measures of TEE in individuals aged 4 to 96 years. The resultant regression equation predicts expected TEE from easily acquired variables, such as body weight, age and sex, with 95% predictive limits that can be used to screen for misreporting by participants in dietary studies. We applied the equation to two large datasets (National Diet and Nutrition Survey and National Health and Nutrition Examination Survey) and found that the level of misreporting was >50%. The macronutrient composition from dietary reports in these studies was systematically biased as the level of misreporting increased, leading to potentially spurious associations between diet components and body mass index.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View