Morphological transitions of elastic filaments in shear flow
Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

Morphological transitions of elastic filaments in shear flow

Abstract

Significance Elastic filaments and semiflexible polymers occur ubiquitously in biophysical systems and are key components of many complex fluids, yet our understanding of their conformational dynamics under flow is incomplete. Here, we report on experimental observations of actin filaments in simple shear and characterize their various dynamical regimes from tumbling to buckling and snaking. Numerical simulations accounting for elastohydrodynamics as well as Brownian fluctuations show perfect agreement with measurements. Using a reduced-order theoretical model, we elucidate the unexplained mechanism for the transition to snaking. Our results pave the way for a better understanding of biophysical processes, as well as the rheology of sheared soft materials, and provide a theoretical framework for the exploration of the dynamics of dilute and semidilute suspensions.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View