Skip to main content
eScholarship
Open Access Publications from the University of California

Structure identification in relational data

Abstract

This paper presents several investigations into the prospects for identifying meaningful structures in empirical data, namely, structures permitting effective organization of the data to meet requirements of future queries. We propose a general framework whereby the notion of identifiability is given a precise formal definition similar to that of learnability. Using this framework, we then explore if a tractable procedure exists for deciding whether a given relation is decomposable into a constraint network or a CNF theory with desirable topology and, if the answer is positive, identifying the desired decomposition. Finally, we address the problem of expressing a given relation as a Horn theory and, if this is impossible, finding the best k-Horn approximation to the given relation. We show that both problems can be solved in time polynomial in the length of the data.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View