- Main
Adaptation and visual search in mammographic images
Published Web Location
https://doi.org/10.3758/s13414-015-0841-5Abstract
Radiologists face the visually challenging task of detecting suspicious features within the complex and noisy backgrounds characteristic of medical images. We used a search task to examine whether the salience of target features in x-ray mammograms could be enhanced by prior adaptation to the spatial structure of the images. The observers were not radiologists, and thus had no diagnostic training with the images. The stimuli were randomly selected sections from normal mammograms previously classified with BIRADS Density scores of "fatty" versus "dense," corresponding to differences in the relative quantities of fat versus fibroglandular tissue. These categories reflect conspicuous differences in visual texture, with dense tissue being more likely to obscure lesion detection. The targets were simulated masses corresponding to bright Gaussian spots, superimposed by adding the luminance to the background. A single target was randomly added to each image, with contrast varied over five levels so that they varied from difficult to easy to detect. Reaction times were measured for detecting the target location, before or after adapting to a gray field or to random sequences of a different set of dense or fatty images. Observers were faster at detecting the targets in either dense or fatty images after adapting to the specific background type (dense or fatty) that they were searching within. Thus, the adaptation led to a facilitation of search performance that was selective for the background texture. Our results are consistent with the hypothesis that adaptation allows observers to more effectively suppress the specific structure of the background, thereby heightening visual salience and search efficiency.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-