Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

Efficient charge to spin conversion in iridium oxide thin films

Published Web Location

https://doi.org/10.1063/5.0153329Creative Commons 'BY' version 4.0 license
Abstract

Many 5d transition metal oxides have a unique electronic structure, where the density of states near the Fermi level is dominated by only 5d electrons with strong spin–orbit coupling. IrO2, a Dirac nodal line semi-metal, is the simplest of these oxides. The presence of 5d electrons and gap opening of Dirac nodal lines via strong spin–orbit coupling allows for the hybridization of the 5d electrons of the oxide with the itinerant d electrons of a ferromagnet, while simultaneously increasing the intrinsic spin Hall effect. We report large charge-to-spin conversion in thin films of this material using spin-torque ferromagnetic resonance experiments. By independently performing line shape analysis and linewidth modulation experiments, we conclusively determine the spin Hall angle of optimized IrO2 films to be ∼8 times larger than that of Pt.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View