Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Nanoparticle‐Templated Molecular Recognition Platforms for Detection of Biological Analytes

Published Web Location

https://doi.org/10.1002/cpch.10
Abstract

Molecular recognition of biological analytes with optical nanosensors provides both spatial and temporal biochemical information. A recently developed sensing platform exploits near-infrared fluorescent single-wall carbon nanotubes combined with electrostatically pinned heteropolymers to yield a synthetic molecular recognition technique that is maximally transparent through biological matter. This molecular recognition technique is known as corona phase molecular recognition (CoPhMoRe). In CoPhMoRe, the specificity of a folded polymer toward an analyte does not arise from a pre-existing polymer-analyte chemical affinity. Rather, specificity is conferred through conformational changes undergone by a polymer that is pinned to the surface of a nanoparticle in the presence of an analyte and the subsequent modifications in fluorescence readout of the nanoparticles. The protocols in this article describe a novel single-molecule microscopy tool (near-infrared fluorescence and total internal reflection fluorescence [nIRF TIRF] hybrid microscope) to visualize the CoPhMoRe recognition process, enabling a better understanding of synthetic molecular recognition. We describe this requisite microscope for simultaneous single-molecule visualization of optical molecular recognition and signal transduction. We elaborate on the general procedures for synthesizing and identifying single-walled carbon nanotube-based sensors that employ CoPhMoRe via two biologically relevant examples of single-molecule recognition for the hormone estradiol and the neurotransmitter dopamine. © 2016 by John Wiley & Sons, Inc.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View