Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

From Voxels to Physiology: A Review of Diffusion Magnetic Resonance Imaging Applications in Skeletal Muscle.

Abstract

Skeletal muscle has a classic structure function relationship; both skeletal muscle microstructure and architecture are directly related to force generating capacity. Biopsy, the gold standard for evaluating muscle microstructure, is highly invasive, destructive to muscle, and provides only a small amount of information about the entire volume of a muscle. Similarly, muscle fiber lengths and pennation angles, key features of muscle architecture predictive of muscle function, are traditionally studied via cadaveric dissection. Noninvasive techniques such as diffusion magnetic resonance imaging (dMRI) offer quantitative approaches to study skeletal muscle microstructure and architecture. Despite its prevalence in applications for musculoskeletal research, clinical adoption is hindered by a lack of understanding regarding its sensitivity to clinically important biomarkers such as muscle fiber cross-sectional area. This review aims to elucidate how dMRI has been utilized to study skeletal muscle, covering fundamentals of muscle physiology, dMRI acquisition techniques, dMRI modeling, and applications where dMRI has been leveraged to noninvasively study skeletal muscle changes in response to disease, aging, injury, and human performance. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY: Stage 2.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View