Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

Dysregulation of STAT3 signaling is associated with endplate-oriented herniations of the intervertebral disc in Adgrg6 mutant mice

Abstract

Degenerative changes of the intervertebral disc (IVD) are a leading cause of disability affecting humans worldwide and has been attributed primarily to trauma and the accumulation of pathology during aging. While genetic defects have also been associated with disc degeneration, the precise mechanisms driving the initiation and progression of disease have remained elusive due to a paucity of genetic animal models. Here, we discuss a novel conditional mouse genetic model of endplate-oriented disc herniations in adult mice. Using conditional mouse genetics, we show increased mechanical stiffness and reveal dysregulation of typical gene expression profiles of the IVD in adhesion G-protein coupled receptor G6 (Adgrg6) mutant mice prior to the onset of endplate-oriented disc herniations in adult mice. We observed increased STAT3 activation prior to IVD defects and go on to demonstrate that treatment of Adgrg6 conditional mutant mice with a small molecule inhibitor of STAT3 activation ameliorates endplate-oriented herniations. These findings establish ADGRG6 and STAT3 as novel regulators of IVD endplate and growth plate integrity in the mouse, and implicate ADGRG6/STAT3 signaling as promising therapeutic targets for endplate-oriented disc degeneration.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View