Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Relaxed Random Walks at Scale

Abstract

Relaxed random walk (RRW) models of trait evolution introduce branch-specific rate multipliers to modulate the variance of a standard Brownian diffusion process along a phylogeny and more accurately model overdispersed biological data. Increased taxonomic sampling challenges inference under RRWs as the number of unknown parameters grows with the number of taxa. To solve this problem, we present a scalable method to efficiently fit RRWs and infer this branch-specific variation in a Bayesian framework. We develop a Hamiltonian Monte Carlo (HMC) sampler to approximate the high-dimensional, correlated posterior that exploits a closed-form evaluation of the gradient of the trait data log-likelihood with respect to all branch-rate multipliers simultaneously. Our gradient calculation achieves computational complexity that scales only linearly with the number of taxa under study. We compare the efficiency of our HMC sampler to the previously standard univariable Metropolis-Hastings approach while studying the spatial emergence of the West Nile virus in North America in the early 2000s. Our method achieves at least a 6-fold speed increase over the univariable approach. Additionally, we demonstrate the scalability of our method by applying the RRW to study the correlation between five mammalian life history traits in a phylogenetic tree with $3650$ tips.[Bayesian inference; BEAST; Hamiltonian Monte Carlo; life history; phylodynamics, relaxed random walk.].

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View