Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Association of iron deposition in MS lesion with remyelination capacity using susceptibility source separation MRI

Published Web Location

https://www.sciencedirect.com/science/article/pii/S221315822500018X
No data is associated with this publication.
Creative Commons 'BY-NC-ND' version 4.0 license
Abstract

Objectives

Susceptibility source-separation (χ-separation) MRI provides in-vivo proxy of myelin (diamagnetic susceptibility, χdia) and iron concentrations (paramagnetic susceptibility, χpara) in the central nervous system, potentially uncovering myelin- and iron-related pathology in multiple sclerosis (MS) lesions (e.g., demyelination, remyelination, and iron-laden microglia/macrophages formation). This study aims to monitor longitudinal changes in χpara and χdia signals within MS lesions using χ-separation and evaluate the association between lesional iron and remyelination capability.

Methods

Fifty participants with MS (pwMS) were followed annually over a mean period of 3.3 years (SD = 1.8 years) with MRI, including χ-separation, and clinical assessments. To monitor lesions from their early stage (lesion age < 1 year), we identified newly-noted lesions (NNLs) and contrast-enhancing lesions (CELs), and tracked their longitudinal changes in χpara and χdia signals.

Results

Twenty-three pwMS were detected with NNLs and/or CELs (38 NNLs, 31 CELs;7 overlapped). Among these lesions (62 lesions in total), 27 exhibited χpara hyperintensity, termed hyper-paramagnetic sign (HPS), indicating iron deposition "throughout" the lesion (not confined to rim sign). Early-stage HPS correlated with future remyelination failure detected by χdia myelin signals (P < 0.001). After adjustment, lesions with early HPS demonstrated an annual loss in myelin signal (-1.94 ppb/year), whereas those without early HPS exhibited annual recovery (+0.66 ppb/year). Participants with confirmed disability improvement (CDI) had fewer HPS-positive lesions at baseline than those without CDI (P < 0.001).

Conclusion

The presence of HPS is associated with impaired remyelination capacity and a lack of disease improvement in pwMS. Identifying HPS may help demarcate lesions more amenable to myelin repair therapies.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item