Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Cellular transitions during cranial suture establishment in zebrafish.

Abstract

Cranial sutures separate neighboring skull bones and are sites of bone growth. A key question is how osteogenic activity is controlled to promote bone growth while preventing aberrant bone fusions during skull expansion. Using single-cell transcriptomics, lineage tracing, and mutant analysis in zebrafish, we uncover key developmental transitions regulating bone formation at sutures during skull expansion. In particular, we identify a subpopulation of mesenchyme cells in the mid-suture region that upregulate a suite of genes including BMP antagonists (e.g. grem1a) and pro-angiogenic factors. Lineage tracing with grem1a:nlsEOS reveals that this mid-suture subpopulation is largely non-osteogenic. Moreover, combinatorial mutation of BMP antagonists enriched in this mid-suture subpopulation results in increased BMP signaling in the suture, misregulated bone formation, and abnormal suture morphology. These data reveal establishment of a non-osteogenic mesenchyme population in the mid-suture region that restricts bone formation through local BMP antagonism, thus ensuring proper suture morphology.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View