- Main
Antillatoxin is a sodium channel activator that displays unique efficacy in heterologously expressed rNav1.2, rNav1.4 and rNav1.5 alpha subunits
Published Web Location
http://dx.doi.org/10.1186/1471-2202-11-154Abstract
Abstract Background Antillatoxin (ATX) is a structurally unique lipopeptide produced by the marine cyanobacterium Lyngbya majuscula. ATX activates voltage-gated sodium channel α-subunits at an undefined recognition site and stimulates sodium influx in neurons. However, the pharmacological properties and selectivity of ATX on the sodium channel α-subunits were not fully characterized. Results In this study, we characterized the pharmacological properties and selectivity of ATX in cells heterologously expressing rNav1.2, rNav1.4 or rNav1.5 α-subunits by using the Na+ selective fluorescent dye, sodium-binding benzofuran isophthalate. ATX produced sodium influx in cells expressing each sodium channel α-subunit, whereas two other sodium channel activators, veratridine and brevetoxin-2, were without effect. The ATX potency at rNav1.2, rNav1.4 and rNav1.5 did not differ significantly. Similarly, there were no significant differences in the efficacy for ATX-induced sodium influx between rNav1.2, rNav1.4 and rNav1.5 α-subunits. ATX also produced robust Ca2+ influx relative to other sodium channel activators in the calcium-permeable DEAA mutant of rNav1.4 α-subunit. Finally, we demonstrated that the 8-demethyl-8,9-dihydro-antillatoxin analog was less efficacious and less potent in stimulating sodium influx. Conclusions ATX displayed a unique efficacy with respect to stimulation of sodium influx in cells expressing rNav1.2, rNav1.4 and rNav1.5 α-subunits. The efficacy of ATX was distinctive inasmuch as it was not shared by activators of neurotoxin sites 2 and 5 on VGSC α-subunits. Given the unique pharmacological properties of ATX interaction with sodium channel α-subunits, decoding the molecular determinants and mechanism of action of antillatoxin may provide further insight into sodium channel gating mechanisms.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-