- Main
Key Amino Acid Residues of Mitochondrial Transcription Factor A Synergize with Abasic (AP) Site Dynamics To Facilitate AP-Lyase Reactions.
Published Web Location
https://doi.org/10.1021/acschembio.3c00047Abstract
Human mitochondrial DNA (mtDNA) encodes 37 essential genes and plays a critical role in mitochondrial and cellular functions. mtDNA is susceptible to damage by endogenous and exogenous chemicals. Damaged mtDNA molecules are counteracted by the redundancy, repair, and degradation of mtDNA. In response to difficult-to-repair or excessive amounts of DNA lesions, mtDNA degradation is a crucial mitochondrial genome maintenance mechanism. Nevertheless, the molecular basis of mtDNA degradation remains incompletely understood. Recently, mitochondrial transcription factor A (TFAM) has emerged as a factor in degrading damaged mtDNA containing abasic (AP) sites. TFAM has AP-lyase activity, which cleaves DNA at AP sites. Human TFAM and its homologs contain a higher abundance of Glu than that of the proteome. To decipher the role of Glu in TFAM-catalyzed AP-DNA cleavage, we constructed TFAM variants and used biochemical assays, kinetic simulations, and molecular dynamics (MD) simulations to probe the functional importance of E187 near a key residue K186. Our previous studies showed that K186 is a primary residue to cleave AP-DNA via Schiff base chemistry. Here, we demonstrate that E187 facilitates β-elimination, key to AP-DNA strand scission. MD simulations showed that extrahelical confirmation of the AP lesion and the flexibility of E187 in TFAM-DNA complexes facilitate AP-lyase reactions. Together, highly abundant Lys and Glu residues in TFAM promote AP-DNA strand scission, supporting the role of TFAM in AP-DNA turnover and implying the breadth of this process across different species.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-