Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Sestrin2 is induced by glucose starvation via the unfolded protein response and protects cells from non-canonical necroptotic cell death

Published Web Location

https://doi.org/10.1038/srep22538
Abstract

Sestrin2 is a member of a family of stress responsive proteins, which controls cell viability via antioxidant activity and regulation of the mammalian target of rapamycin protein kinase (mTOR). Sestrin2 is induced by different stress insults, which diminish ATP production and induce energetic stress in the cells. Glucose is a critical substrate for ATP production utilized via glycolysis and mitochondrial respiration as well as for glycosylation of newly synthesized proteins in the endoplasmic reticulum (ER) and Golgi. Thus, glucose starvation causes both energy deficiency and activation of ER stress followed by the unfolding protein response (UPR). Here, we show that UPR induces Sestrin2 via ATF4 and NRF2 transcription factors and demonstrate that Sestrin2 protects cells from glucose starvation-induced cell death. Sestrin2 inactivation sensitizes cells to necroptotic cell death that is associated with a decline in ATP levels and can be suppressed by Necrostatin 7. We propose that Sestrin2 protects cells from glucose starvation-induced cell death via regulation of mitochondrial homeostasis.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View