Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

SiamQuality: a ConvNet-based foundation model for photoplethysmography signals.

Abstract

Objective. Physiological data are often low quality and thereby compromises the effectiveness of related health monitoring. The primary goal of this study is to develop a robust foundation model that can effectively handle low-quality issue in physiological data.Approach. We introduce SiamQuality, a self-supervised learning approach using convolutional neural networks (CNNs) as the backbone. SiamQuality learns to generate similar representations for both high and low quality photoplethysmography (PPG) signals that originate from similar physiological states. We leveraged a substantial dataset of PPG signals from hospitalized intensive care patients, comprised of over 36 million 30 s PPG pairs.Main results. After pre-training the SiamQuality model, it was fine-tuned and tested on six PPG downstream tasks focusing on cardiovascular monitoring. Notably, in tasks such as respiratory rate estimation and atrial fibrillation detection, the models performance exceeded the state-of-the-art by 75% and 5%, respectively. The results highlight the effectiveness of our model across all evaluated tasks, demonstrating significant improvements, especially in applications for heart monitoring on wearable devices.Significance. This study underscores the potential of CNNs as a robust backbone for foundation models tailored to physiological data, emphasizing their capability to maintain performance despite variations in data quality. The success of the SiamQuality model in handling real-world, variable-quality data opens new avenues for the development of more reliable and efficient healthcare monitoring technologies.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View