Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

Efficiency fluctuations in quantum thermoelectric devices

Abstract

We present a method, based on characterizing efficiency fluctuations, to assess the performance of nanoscale thermoelectric junctions. This method accounts for effects typically arising in small junctions, namely, stochasticity in the junction's performance, quantum effects, and nonequilibrium features preventing a linear response analysis. It is based on a nonequilibrium Green's function (NEGF) approach, which we use to derive the full counting statistics (FCS) for heat and work, and which in turn allows us to calculate the statistical properties of efficiency fluctuations. We simulate the latter for a variety of simple models where our method is exact. By analyzing the discrepancies with the semiclassical prediction of a quantum master equation (QME) approach, we emphasize the quantum nature of efficiency fluctuations for realistic junction parameters. We finally propose an approximate Gaussian method to express efficiency fluctuations in terms of nonequilibrium currents and noises which are experimentally measurable in molecular junctions.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View