Skip to main content
eScholarship
Open Access Publications from the University of California

UC Riverside

UC Riverside Previously Published Works bannerUC Riverside

Physics-Informed Data-Driven Models to Predict Surface Runoff Water Quantity and Quality in Agricultural Fields

Published Web Location

https://doi.org/10.3390/w11020200
Abstract

Contaminants can be rapidly transported at the soil surface by runoffto surface water bodies. Physically-based models (PBMs), which are based on the mathematical description of main hydrological processes, are key tools for predicting surface water impairment. Along with PBMs, data-driven models are becoming increasingly popular for describing the behavior of hydrological and water resources systems since these models can be used to complement or even replace physically based-models. Here we propose a new data-driven model as an alternative to a physically-based overland flow and transport model. First, we have developed a physically-based numerical model to simulate overland flow and contaminant transport. A large number of numerical simulations was then carried out to develop a database containing information about the impact of various relevant factors on surface runoffquantity and quality, such as different weather patterns, surface topography, vegetation, soil conditions, contaminants, and best management practices. Finally, the resulting database was used to train data-driven models. Several Machine Learning techniques were explored to find input-output functional relations. The results indicate that the Neural Network model with two hidden layers performed the best among selected data-driven models, accurately predicting runoffwater quantity and quality over a wide range of parameters.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View