Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

Effects of chemical preservation on bulk and amino acid isotope ratios of zooplankton, fish, and squid tissues

Published Web Location

http://10.0.3.234/rcm8408
Abstract

Rationale

It is imperative to understand how chemical preservation alters tissue isotopic compositions before using historical samples in ecological studies. Specifically, although compound-specific isotope analysis of amino acids (CSIA-AA) is becoming a widely used tool, there is little information on how preservation techniques affect amino acid δ15 N values.

Methods

We evaluated the effects of chemical preservatives on bulk tissue δ13 C and δ15 N and amino acid δ15 N values, measured by gas chromatography/isotope ratio mass spectrometry (GC/IRMS), of (a) tuna (Thunnus albacares) and squid (Dosidicus gigas) muscle tissues that were fixed in formaldehyde and stored in ethanol for 2 years and (b) two copepod species, Calanus pacificus and Eucalanus californicus, which were preserved in formaldehyde for 24-25 years.

Results

Tissues in formaldehyde-ethanol had higher bulk δ15 N values (+1.4, D. gigas; +1.6‰, T. albacares), higher δ13 C values for D. gigas (+0.5‰), and lower δ13 C values for T. albacares (-0.8‰) than frozen samples. The bulk δ15 N values from copepods were not different those from frozen samples, although the δ13 C values from both species were lower (-1.0‰ for E. californicus and -2.2‰ for C. pacificus) than those from frozen samples. The mean amino acid δ15 N values from chemically preserved tissues were largely within 1‰ of those of frozen tissues, but the phenylalanine δ15 N values were altered to a larger extent (range: 0.5-4.5‰).

Conclusions

The effects of preservation on bulk δ13 C values were variable, where the direction and magnitude of change varied among taxa. The changes in bulk δ15 N values associated with chemical preservation were mostly minimal, suggesting that storage in formaldehyde or ethanol will not affect the interpretation of δ15 N values used in ecological studies. The preservation effects on amino acid δ15 N values were also mostly minimal, mirroring bulk δ15 N trends, which is promising for future CSIA-AA studies of archived specimens. However, there were substantial differences in phenylalanine and valine δ15 N values, which we speculate resulted from interference in the chromatographic resolution of unknown compounds rather than alteration of tissue isotopic composition due to chemical preservation.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View