Skip to main content
Download PDF
- Main
Elemental Causal Learning from Transitions
Abstract
Much research on elemental causal learning has focused on how causal strength is learned from the states of variables. In longitudinal contexts, the way a cause and effect change over time can be informative of the underlying causal relationship. We propose a framework for inferring the causal strength from different observed transitions, and compare the predictions to existing models of causal induction. Subjects observe a cause and effect over time, updating their judgments of causal strength after observing different transitions. The results show that some transitions have an effect on causal strength judgments over and above states.
Main Content
For improved accessibility of PDF content, download the file to your device.
If you recently published or updated this item, please wait up to 30 minutes for the PDF to appear here.
Enter the password to open this PDF file:
File name:
-
File size:
-
Title:
-
Author:
-
Subject:
-
Keywords:
-
Creation Date:
-
Modification Date:
-
Creator:
-
PDF Producer:
-
PDF Version:
-
Page Count:
-
Page Size:
-
Fast Web View:
-
Preparing document for printing…
0%