Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

Densely distributed and real-time scour hole monitoring using piezoelectric rod sensors

Abstract

This study aims to validate a piezoelectric driven-rod scour monitoring system that can sense changes in scour depth along the entire rod at its instrumented location. The proposed sensor is a polymeric slender rod with a thin strip of polyvinylidene fluoride that runs through its midline. Extraction of the fundamental frequency allows the direct calculation of the exposed length (or scour depth) of the slender rod undergoing fluid flow excitation. First, laboratory validation in dry conditions is presented. Second, hydrodynamic testing of the sensor system in a soil-bed flume is discussed. Each rod was installed using a three-dimensional-printed footing designed for ease of installation and stabilization during testing. The sensors were installed in a layout designed to capture symmetric scour conditions around a scaled pier. In order to analyze the system out of steady-state conditions, water velocity was increased in stages during testing to induce different degrees of scour. As ambient water flow excited the portion of the exposed rods, the embedded piezoelectric element outputted a time-varying voltage signal. Different methods were then employed to extract the fundamental frequency of each rod, and the results were compared. Further testing was also performed to characterize the relationship between frequency outputs and flow velocity, which were previously thought to be independent. In general, the proposed driven-rod scour monitoring system successfully captured changing frequencies under varied flow conditions.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View