- Main
Delineating Electrogenic Reactions during Lactose/H+ Symport
Published Web Location
https://doi.org/10.1021/bi100492pAbstract
Electrogenic reactions accompanying downhill lactose/H(+) symport catalyzed by the lactose permease of Escherichia coli (LacY) have been assessed using solid-supported membrane-based electrophysiology with improved time resolution. Rates of charge translocation generated by purified LacY reconstituted into proteoliposomes were analyzed over a pH range from 5.2 to 8.5, which allows characterization of two electrogenic steps in the transport mechanism: (i) a weak electrogenic reaction triggered by sugar binding and observed under conditions where H(+) translocation is abolished either by acidic pH or by a Glu325 --> Ala mutation in the H(+) binding site (this step with a rate constant of approximately 200 s(-1) for wild-type LacY leads to an intermediate proposed to represent an "occluded" state) and (ii) a major electrogenic reaction corresponding to 94% of the total charge translocated at pH 8, which is pH-dependent with a maximum rate of approximately 30 s(-1) and a pK of 7.5. This partial reaction is assigned to rate-limiting H(+) release on the cytoplasmic side of LacY during turnover. These findings together with previous electrophysiological results and biochemical-biophysical studies are included in an overall kinetic mechanism that allows delineation of the electrogenic steps in the reaction pathway.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-