- Main
Dicopper Cu(I)Cu(I) and Cu(I)Cu(II) Complexes in Copper-Catalyzed Azide–Alkyne Cycloaddition
Published Web Location
https://doi.org/10.1021/jacs.6b13261Abstract
A discrete, dicopper μ-alkynyl complex, [Cu2(μ-η1:η1-C≡C(C6H4)CH3)DPFN]NTf2 (DPFN = 2,7-bis(fluoro-di(2-pyridyl)methyl)-1,8-naphthyridine; NTf2- = N(SO2CF3)2-), reacts with p-tolylazide to yield a dicopper complex with a symmetrically bridging 1,2,3-triazolide, [Cu2(μ-η1:η1-(1,4-bis(4-tolyl)-1,2,3-triazolide))DPFN]NTf2. This transformation exhibits bimolecular reaction kinetics and represents a key step in a proposed, bimetallic mechanism for copper-catalyzed azide-alkyne cycloaddition (CuAAC). The μ-alkynyl and μ-triazolide complexes undergo reversible redox events (by cyclic voltammetry), suggesting that a cycloaddition pathway involving mixed-valence dicopper species might also be possible. Synthesis and characterization of the mixed-valence μ-alkynyl dicopper complex, [Cu2(μ-η1:η1-C≡C(C6H4)CH3)DPFN](NTf2)2, revealed an electronic structure with an unexpected partially delocalized spin, as evidenced by electron paramagnetic resonance spectroscopy. Studies of the mixed-valence μ-alkynyl complex's reactivity suggest that a mixed-valence pathway is less likely than one involving intermediates with only copper(I).
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-