Skip to main content
Download PDF
- Main
Improved methods for multi-trait fine mapping of pleiotropic risk loci
Published Web Location
https://doi.org/10.1093/bioinformatics/btw615Abstract
Motivation
Genome-wide association studies (GWAS) have identified thousands of regions in the genome that contain genetic variants that increase risk for complex traits and diseases. However, the variants uncovered in GWAS are typically not biologically causal, but rather, correlated to the true causal variant through linkage disequilibrium (LD). To discern the true causal variant(s), a variety of statistical fine-mapping methods have been proposed to prioritize variants for functional validation.Results
In this work we introduce a new approach, fastPAINTOR, that leverages evidence across correlated traits, as well as functional annotation data, to improve fine-mapping accuracy at pleiotropic risk loci. To improve computational efficiency, we describe an new importance sampling scheme to perform model inference. First, we demonstrate in simulations that by leveraging functional annotation data, fastPAINTOR increases fine-mapping resolution relative to existing methods. Next, we show that jointly modeling pleiotropic risk regions improves fine-mapping resolution compared to standard single trait and pleiotropic fine mapping strategies. We report a reduction in the number of SNPs required for follow-up in order to capture 90% of the causal variants from 23 SNPs per locus using a single trait to 12 SNPs when fine-mapping two traits simultaneously. Finally, we analyze summary association data from a large-scale GWAS of lipids and show that these improvements are largely sustained in real data.Availability and implementation
The fastPAINTOR framework is implemented in the PAINTOR v3.0 package which is publicly available to the research community http://bogdan.bioinformatics.ucla.edu/software/paintor CONTACT: gkichaev@ucla.eduSupplementary information: Supplementary data are available at Bioinformatics online.Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
For improved accessibility of PDF content, download the file to your device.
Enter the password to open this PDF file:
File name:
-
File size:
-
Title:
-
Author:
-
Subject:
-
Keywords:
-
Creation Date:
-
Modification Date:
-
Creator:
-
PDF Producer:
-
PDF Version:
-
Page Count:
-
Page Size:
-
Fast Web View:
-
Preparing document for printing…
0%