Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Macroevolution of protective coloration across caterpillars reflects relationships with host plants

Abstract

A critical function of animal coloration is avoiding attack, either by warning predators or reducing detectability. Evolution of these divergent strategies may depend on prey palatability and apparency to predators: conspicuous coloration may be favoured if species are distasteful, or habitats make hiding difficult; by contrast, camouflage may be effective if prey lack defences or environments are visually complex. For insect herbivores, host plants provide both chemical defence and the background against which they are detected or obscured; thus, plant traits may be key to coloration in these foundational terrestrial organisms. We use 1808 species of larval Lepidoptera to explore macroevolution of protective coloration strategy. We find that colour and pattern evolve jointly in caterpillars, similar to an array of species across the animal kingdom, while individual elements of coloration evolve closely with diet ecology. Consistent with key tenets of plant defence and plant-herbivore coevolutionary theory, conspicuous colours are associated with herbaceous host plants-thought to be defended by toxins-while camouflage colours and patterns are associated with woody plants and grasses. Contrary to theory, dietary specialization is not associated with conspicuous coloration. Our results add valuable insights into the evolutionary forces shaping colour and pattern in nature.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View