- Main
Real-time volumetric reconstruction of biological dynamics with light-field microscopy and deep learning
Published Web Location
https://doi.org/10.1038/s41592-021-01058-xAbstract
Light-field microscopy has emerged as a technique of choice for high-speed volumetric imaging of fast biological processes. However, artifacts, nonuniform resolution and a slow reconstruction speed have limited its full capabilities for in toto extraction of dynamic spatiotemporal patterns in samples. Here, we combined a view-channel-depth (VCD) neural network with light-field microscopy to mitigate these limitations, yielding artifact-free three-dimensional image sequences with uniform spatial resolution and high-video-rate reconstruction throughput. We imaged neuronal activities across moving Caenorhabditis elegans and blood flow in a beating zebrafish heart at single-cell resolution with volumetric imaging rates up to 200 Hz.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-