- Main
Explainable Machine Learning Interpretations on New Zealand Random Forest Liquefaction Manifestation Predictions
Published Web Location
https://doi.org/10.3208/jgssp.v10.os-26-06Abstract
The abundant post-earthquake data from the Canterbury, New Zealand (NZ) area is poised for use with machine learning (ML) to further advance our ability to better predict and understand the effects of liquefaction. Liquefaction manifestation is one of the identifiable effects of liquefaction, a nonlinear phenomenon that is still not well understood. ML algorithms are often termed as “black-box” models that have little to no explainability for the resultant predictions, making them difficult for use in practice. With the SHapley Additive exPlanations (SHAP) algorithm wrapper, mathematically backed explanations can be fit to the model to track input feature influences on the final prediction. In this paper, Random Forest (RF) is chosen as the ML model to be utilized as it is a powerful non-parametric classification model, then SHAP is applied to calculate explanations for the predictions at a global and local feature scale. The RF model hyperparameters are optimized with a two-step grid search and a five-fold cross-validation to avoid overfitting. The overall model accuracy is 71% over six ordinal categories predicting the Canterbury Earthquake Sequence measurements from 2010, 2011, and 2016. Insights from the SHAP application onto the RF model include the influences of PGA, GWT depths, and SBTs for each ordinal class prediction. This preliminary exploration using SHAP can pave the way for both reinforcing the performance of current ML models by comparing to previous knowledge and using it as a discovery tool for identifying which research areas are pertinent to unlocking more understanding of liquefaction mechanics.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-