Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Unenhanced MDCT in suspected urolithiasis: improved stone detection and density measurements using coronal maximum-intensity-projection images.

Abstract

Objective

The purpose of this study was to determine whether coronal maximum-intensity-projection (MIP) reformations improve urinary tract stone detection and density measurements compared with routine axial and coronal images.

Materials and methods

Forty-five consecutive patients who underwent MDCT for suspected urolithiasis were included. Two radiologists independently determined the number of stones on 5-, 3-, and 1.25-mm axial, 5- and 3-mm coronal, and 5-mm coronal MIP images. The reference standard was obtained by consensus review using all six datasets. Stone density was determined for all calculi 4 mm or larger on all datasets.

Results

There were a total of 115 stones. Reader 1 identified 111 (96.5%), 112 (97.4%), 97 (84.3%), 102 (88.7%), 99 (86.1%), and 85 (73.9%) stones and reader 2 identified 105 (91.3%), 102 (88.7%), 85 (73.9%), 89 (77.4%), 89 (77.4%), and 76 (66.1%) stones on the MIP, 1.25-mm axial, 3-mm axial, 3-mm coronal, 5-mm coronal, and 5-mm axial images, respectively. Both readers identified more stones on the MIP images than on the 3- or 5-mm axial or coronal images (p < 0.0001). The mean difference in stone attenuation compared with the thin axial images was significantly less for the MIP images (44.6 HU) compared with 3-mm axial (235 HU), 3-mm coronal (309 HU), and 5-mm coronal (329.6 HU) or axial images (347.8 HU) (p < 0.0001).

Conclusion

Coronal MIP reformations allow more accurate identification and density measurements of urinary tract stones compared with routine axial and coronal reformations.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View