Skip to main content
Download PDF
- Main
Proof of Correctness for Sparse Tiling of Gauss-Seidel
Abstract
Gauss-Seidel is an iterative computation used for solving sets of simulataneous linear equations, $Au=f$. When these unknowns are associated with nodes in an irregular mesh, then the Gauss-Seidel computation structure is related to the mesh structure. We use this structure to subdivide the computation at runtime using a technique called {\em sparse tiling}. The rescheduled computation exhibits better data locality and therefore improved performance. This paper gives a complete proof that a serial schedule based on sparse tiling generates results equivalent to those that a standard Gauss-Seidel computation produces.
Pre-2018 CSE ID: CS2001-0690
Main Content
For improved accessibility of PDF content, download the file to your device.
If you recently published or updated this item, please wait up to 30 minutes for the PDF to appear here.
Enter the password to open this PDF file:
File name:
-
File size:
-
Title:
-
Author:
-
Subject:
-
Keywords:
-
Creation Date:
-
Modification Date:
-
Creator:
-
PDF Producer:
-
PDF Version:
-
Page Count:
-
Page Size:
-
Fast Web View:
-
Preparing document for printing…
0%