Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

Surface Glycan Modification of Cellular Nanosponges to Promote SARS-CoV‑2 Inhibition

Abstract

Cellular binding and entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are mediated by its spike glycoprotein (S protein), which binds with not only the human angiotensin-converting enzyme 2 (ACE2) receptor but also glycosaminoglycans such as heparin. Cell membrane-coated nanoparticles ("cellular nanosponges") mimic the host cells to attract and neutralize SARS-CoV-2 through natural cellular receptors, leading to a broad-spectrum antiviral strategy. Herein, we show that increasing surface heparin density on the cellular nanosponges can promote their inhibition against SARS-CoV-2. Specifically, cellular nanosponges are made with azido-expressing host cell membranes followed by conjugating heparin to the nanosponge surfaces. Cellular nanosponges with a higher heparin density have a larger binding capacity with viral S proteins and a significantly higher inhibition efficacy against SARS-CoV-2 infectivity. Overall, surface glycan engineering of host-mimicking cellular nanosponges is a facile method to enhance SARS-CoV-2 inhibition. This approach can be readily generalized to promote the inhibition of other glycan-dependent viruses.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View