- Main
Dissociation of HCl in water nanoclusters: an energy decomposition analysis perspective
Published Web Location
https://doi.org/10.1039/d1cp04587cAbstract
As known, small HCl-water nanoclusters display a particular dissociation behaviour, whereby at least four water molecules are required for the ionic dissociation of HCl. In this work, we examine how intermolecular interactions promote the ionic dissociation of such nanoclusters. To this end, a set of 45 HCl-water nanoclusters with up to four water molecules is introduced. Energy decomposition analysis based on absolutely localized molecular orbitals (ALMO-EDA) is employed in order to study the importance of frozen interaction, dispersion, polarization, and charge-transfer for the dissociation. The vertical ALMO-EDA scheme is applied to HCl-water clusters along a proton-transfer coordinate varying the amount of spectator water molecules. The corresponding ALMO-EDA results show a clear preference for the dissociated cluster only in the presence of four water molecules. Our analysis of adiabatic ALMO-EDA results reveals a push-pull mechanism for the destabilization of the HCl bond based on the synergy between forward and backward charge-transfer.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-