Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Mixed-species bird flocks re-assemble interspecific associations across an elevational gradient.

Abstract

Understanding how non-trophic social systems respond to environmental gradients is still a challenge in animal ecology, particularly in comparing changes in species composition to changes in interspecific interactions. Here, we combined long-term monitoring of mixed-species bird flocks, data on participating species evolutionary history and traits, to test how elevation affected community assemblages and interspecific interactions in flock social networks. Elevation primarily affected flocks through reassembling interspecific associations rather than modifying community assemblages. Specifically, flock networks at higher elevations (compared to low elevations) had stronger interspecific associations (larger average weighted degree), network connectivity (enhanced network density) and fewer subnetworks. A phylogenetic and functional perspective revealed that associations between similar species weakened, whereas connections between dissimilar and/or random species were unchanged or strengthened with elevation. Likewise, network assortativity for the traits of vertical stratum and breeding period declined with elevation. The overall pattern is a change from modular networks in the lowlands, where species join flocks with other species that have matching traits, to a more open, random system at high elevations. Collectively, this rewiring of interspecific networks across elevational gradients imparts network stability and resiliency and makes mixed-species flocks less sensitive to local extinctions caused by harsh environments.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View