- Main
The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. II. UV, Optical, and Near-infrared Light Curves and Comparison to Kilonova Models
- Cowperthwaite, PS;
- Berger, E;
- Villar, VA;
- Metzger, BD;
- Nicholl, M;
- Chornock, R;
- Blanchard, PK;
- Fong, W;
- Margutti, R;
- Soares-Santos, M;
- Alexander, KD;
- Allam, S;
- Annis, J;
- Brout, D;
- Brown, DA;
- Butler, RE;
- Chen, H-Y;
- Diehl, HT;
- Doctor, Z;
- Drout, MR;
- Eftekhari, T;
- Farr, B;
- Finley, DA;
- Foley, RJ;
- Frieman, JA;
- Fryer, CL;
- García-Bellido, J;
- Gill, MSS;
- Guillochon, J;
- Herner, K;
- Holz, DE;
- Kasen, D;
- Kessler, R;
- Marriner, J;
- Matheson, T;
- Neilsen, EH;
- Quataert, E;
- Palmese, A;
- Rest, A;
- Sako, M;
- Scolnic, DM;
- Smith, N;
- Tucker, DL;
- Williams, PKG;
- Balbinot, E;
- Carlin, JL;
- Cook, ER;
- Durret, F;
- Li, TS;
- Lopes, PAA;
- Lourenço, ACC;
- Marshall, JL;
- Medina, GE;
- Muir, J;
- Muñoz, RR;
- Sauseda, M;
- Schlegel, DJ;
- Secco, LF;
- Vivas, AK;
- Wester, W;
- Zenteno, A;
- Zhang, Y;
- Abbott, TMC;
- Banerji, M;
- Bechtol, K;
- Benoit-Lévy, A;
- Bertin, E;
- Buckley-Geer, E;
- Burke, DL;
- Capozzi, D;
- Rosell, A Carnero;
- Kind, M Carrasco;
- Castander, FJ;
- Crocce, M;
- Cunha, CE;
- D’Andrea, CB;
- da Costa, LN;
- Davis, C;
- DePoy, DL;
- Desai, S;
- Dietrich, JP;
- Drlica-Wagner, A;
- Eifler, TF;
- Evrard, AE;
- Fernandez, E;
- Flaugher, B;
- Fosalba, P;
- Gaztanaga, E;
- Gerdes, DW;
- Giannantonio, T;
- Goldstein, DA;
- Gruen, D;
- Gruendl, RA;
- Gutierrez, G;
- Honscheid, K;
- Jain, B;
- James, DJ;
- Jeltema, T;
- Johnson, MWG;
- Johnson, MD;
- Kent, S;
- Krause, E;
- Kron, R;
- Kuehn, K;
- Nuropatkin, N;
- Lahav, O;
- Lima, M;
- Lin, H;
- Maia, MAG;
- March, M;
- Martini, P;
- McMahon, RG;
- Menanteau, F;
- Miller, CJ;
- Miquel, R;
- Mohr, JJ;
- Neilsen, E;
- Nichol, RC;
- Ogando, RLC;
- Plazas, AA;
- Roe, N;
- Romer, AK;
- Roodman, A;
- Rykoff, ES;
- Sanchez, E;
- Scarpine, V;
- Schindler, R;
- Schubnell, M;
- Sevilla-Noarbe, I;
- Smith, M;
- Smith, RC;
- Sobreira, F;
- Suchyta, E;
- Swanson, MEC;
- Tarle, G;
- Thomas, D;
- Thomas, RC;
- Troxel, MA;
- Vikram, V;
- Walker, AR;
- Wechsler, RH;
- Weller, J;
- Yanny, B;
- Zuntz, J
- et al.
Published Web Location
https://doi.org/10.3847/2041-8213/aa8fc7Abstract
We present UV, optical, and near-infrared (NIR) photometry of the first electromagnetic counterpart to a gravitational wave source from Advanced Laser Interferometer Gravitational-wave Observatory (LIGO)/Virgo, the binary neutron star merger GW170817. Our data set extends from the discovery of the optical counterpart at 0.47-18.5 days post-merger, and includes observations with the Dark Energy Camera (DECam), Gemini-South/FLAMINGOS-2 (GS/F2), and the Hubble Space Telescope (HST). The spectral energy distribution (SED) inferred from this photometry at 0.6 days is well described by a blackbody model with T ≈ 8300 K, a radius of R ≈ 4.5 × 1014cm (corresponding to an expansion velocity of v ≈ 0.3c), and a bolometric luminosity of Lbol ≈ 5 × 1041 erg s-1. At 1.5 days we find a multi-component SED across the optical and NIR, and subsequently we observe rapid fading in the UV and blue optical bands and significant reddening of the optical/NIR colors. Modeling the entire data set, we find that models with heating from radioactive decay of 56Ni, or those with only a single component of opacity from r-process elements, fail to capture the rapid optical decline and red optical/NIR colors. Instead, models with two components consistent with lanthanide-poor and lanthanide-rich ejecta provide a good fit to the data; the resulting "blue" component has Mblueej 0.1 M⊙ and vblueej ≈ 0.3c, and the "red" component has and Mredej ≈ 0.04 M⊙ and vredej ≈ 0.1 c. These ejecta masses are broadly consistent with the estimated r-process production rate required to explain the Milky Way r-process abundances, providing the first evidence that binary neutron star (BNS) mergers can be a dominant site of r-process enrichment.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-