- Main
Nutrient transport suggests an evolutionary basis for charged archaeal surface layer proteins
Published Web Location
https://doi.org/10.1038/s41396-018-0191-0Abstract
Surface layers (S-layers) are two-dimensional, proteinaceous, porous lattices that form the outermost cell envelope component of virtually all archaea and many bacteria. Despite exceptional sequence diversity, S-layer proteins (SLPs) share important characteristics such as their ability to form crystalline sheets punctuated with nano-scale pores, and their propensity for charged amino acids, leading to acidic or basic isoelectric points. However, the precise function of S-layers, or the role of charged SLPs and how they relate to cellular metabolism is unknown. Nano-scale lattices affect the diffusion behavior of low-concentration solutes, even if they are significantly smaller than the pore size. Here, we offer a rationale for charged S-layer proteins in the context of the structural evolution of S-layers. Using the ammonia-oxidizing archaea (AOA) as a model for S-layer geometry, and a 2D electrodiffusion reaction computational framework to simulate diffusion and consumption of the charged solute ammonium (NH4+), we find that the characteristic length scales of nanoporous S-layers elevate the concentration of NH4+ in the pseudo-periplasmic space. Our simulations suggest an evolutionary, mechanistic basis for S-layer charge and shed light on the unique ability of some AOA to oxidize ammonia in environments with nanomolar NH4+ availability, with broad implications for comparisons of ecologically distinct populations.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-